3.2.26 \(\int \frac {\sin ^4(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [126]

3.2.26.1 Optimal result
3.2.26.2 Mathematica [B] (warning: unable to verify)
3.2.26.3 Rubi [A] (verified)
3.2.26.4 Maple [B] (verified)
3.2.26.5 Fricas [A] (verification not implemented)
3.2.26.6 Sympy [F]
3.2.26.7 Maxima [F]
3.2.26.8 Giac [F]
3.2.26.9 Mupad [F(-1)]

3.2.26.1 Optimal result

Integrand size = 25, antiderivative size = 227 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\frac {\left (3 a^2+30 a b+35 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 a^{9/2} f}-\frac {(5 a+7 b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {\cos ^3(e+f x) \sin (e+f x)}{4 a f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}-\frac {b (23 a+35 b) \tan (e+f x)}{24 a^3 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}-\frac {5 b (11 a+21 b) \tan (e+f x)}{24 a^4 f \sqrt {a+b+b \tan ^2(e+f x)}} \]

output
1/8*(3*a^2+30*a*b+35*b^2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^( 
1/2))/a^(9/2)/f-5/24*b*(11*a+21*b)*tan(f*x+e)/a^4/f/(a+b+b*tan(f*x+e)^2)^( 
1/2)-1/8*(5*a+7*b)*cos(f*x+e)*sin(f*x+e)/a^2/f/(a+b+b*tan(f*x+e)^2)^(3/2)+ 
1/4*cos(f*x+e)^3*sin(f*x+e)/a/f/(a+b+b*tan(f*x+e)^2)^(3/2)-1/24*b*(23*a+35 
*b)*tan(f*x+e)/a^3/f/(a+b+b*tan(f*x+e)^2)^(3/2)
 
3.2.26.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1315\) vs. \(2(227)=454\).

Time = 12.11 (sec) , antiderivative size = 1315, normalized size of antiderivative = 5.79 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\left (\frac {a+2 b+a \cos (2 (e+f x))}{a+b}\right )^{3/2} (a+2 b+a \cos (2 e+2 f x))^{5/2} \sec ^5(e+f x) \left (-60 \sqrt {a+b} \left (3 a^3+17 a^2 b+28 a b^2+14 b^3\right ) \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) (a+2 b+a \cos (2 (e+f x)))^2+\sqrt {a} \sin (e+f x) \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}} \left (3 \left (239 a^5+1839 a^4 b+5200 a^3 b^2+6960 a^2 b^3+4480 a b^4+1120 b^5\right )-2 a \left (459 a^4+3180 a^3 b+7200 a^2 b^2+6720 a b^3+2240 b^4\right ) \sin ^2(e+f x)+672 a^2 b (a+b)^2 \sin ^4(e+f x)+192 a^3 (a+b)^2 \sin ^6(e+f x)\right )\right )}{768 \sqrt {2} a^{9/2} f (a+2 b+a \cos (2 (e+f x)))^{7/2} \left (a+b \sec ^2(e+f x)\right )^{5/2}}-\frac {(a+2 b+a \cos (2 e+2 f x))^{5/2} \csc (e+f x) \sec ^5(e+f x) \left (\frac {\sin ^2(e+f x)}{a+b}+\frac {(a+2 b+a \cos (2 (e+f x))) \sin ^2(e+f x)}{(a+b)^2}-\frac {12 \sin ^4(e+f x)}{a+b}+\frac {16 \left (a+b-a \sin ^2(e+f x)\right ) \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (-\frac {6 a (a+b) \sin ^2(e+f x)}{a+2 b+a \cos (2 (e+f x))}+\frac {a^2 (a+b) \sin ^4(e+f x)}{\left (a+b-a \sin ^2(e+f x)\right )^2}+\frac {3 \sqrt {a} \sqrt {a+b} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) \sin (e+f x)}{\sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}}\right )}{a^3}\right )}{768 \sqrt {2} f \left (a+b \sec ^2(e+f x)\right )^{5/2} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}+\frac {(a+2 b+a \cos (2 e+2 f x))^{5/2} \csc (e+f x) \sec ^5(e+f x) \left (\frac {\sin ^2(e+f x)}{a+b}+\frac {(a+2 b+a \cos (2 (e+f x))) \sin ^2(e+f x)}{(a+b)^2}-\frac {24 \sin ^4(e+f x)}{a+b}+\frac {96 \sin ^6(e+f x)}{a}+\frac {80 \left (a+b-a \sin ^2(e+f x)\right ) \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (-\frac {6 a (a+b) \sin ^2(e+f x)}{a+2 b+a \cos (2 (e+f x))}+\frac {a^2 (a+b) \sin ^4(e+f x)}{\left (a+b-a \sin ^2(e+f x)\right )^2}+\frac {3 \sqrt {a} \sqrt {a+b} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) \sin (e+f x)}{\sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}}\right )}{a^3}-\frac {160 \left (a+b-a \sin ^2(e+f x)\right ) \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (-\frac {6 a (a+b)^2 \sin ^2(e+f x)}{a+2 b+a \cos (2 (e+f x))}+\frac {3 \sqrt {a} (a+b)^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) \sin (e+f x)}{\sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}}+\frac {a^2 \sin ^4(e+f x)}{\left (-1+\frac {a \sin ^2(e+f x)}{a+b}\right )^2}\right )}{a^4}\right )}{3072 \sqrt {2} f \left (a+b \sec ^2(e+f x)\right )^{5/2} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}+\frac {(2 a+3 b+a \cos (2 (e+f x))) (a+2 b+a \cos (2 e+2 f x))^{5/2} \sec ^4(e+f x) \tan (e+f x)}{256 (a+b)^2 f (a+2 b+a \cos (2 (e+f x)))^{3/2} \left (a+b \sec ^2(e+f x)\right )^{5/2}}-\frac {(b+(3 a+2 b) \cos (2 (e+f x))) (a+2 b+a \cos (2 e+2 f x))^{5/2} \sec ^4(e+f x) \tan (e+f x)}{384 (a+b)^2 f (a+2 b+a \cos (2 (e+f x)))^{3/2} \left (a+b \sec ^2(e+f x)\right )^{5/2}} \]

input
Integrate[Sin[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]
 
output
-1/768*(((a + 2*b + a*Cos[2*(e + f*x)])/(a + b))^(3/2)*(a + 2*b + a*Cos[2* 
e + 2*f*x])^(5/2)*Sec[e + f*x]^5*(-60*Sqrt[a + b]*(3*a^3 + 17*a^2*b + 28*a 
*b^2 + 14*b^3)*ArcSin[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]*(a + 2*b + a*Cos 
[2*(e + f*x)])^2 + Sqrt[a]*Sin[e + f*x]*Sqrt[(a + b - a*Sin[e + f*x]^2)/(a 
 + b)]*(3*(239*a^5 + 1839*a^4*b + 5200*a^3*b^2 + 6960*a^2*b^3 + 4480*a*b^4 
 + 1120*b^5) - 2*a*(459*a^4 + 3180*a^3*b + 7200*a^2*b^2 + 6720*a*b^3 + 224 
0*b^4)*Sin[e + f*x]^2 + 672*a^2*b*(a + b)^2*Sin[e + f*x]^4 + 192*a^3*(a + 
b)^2*Sin[e + f*x]^6)))/(Sqrt[2]*a^(9/2)*f*(a + 2*b + a*Cos[2*(e + f*x)])^( 
7/2)*(a + b*Sec[e + f*x]^2)^(5/2)) - ((a + 2*b + a*Cos[2*e + 2*f*x])^(5/2) 
*Csc[e + f*x]*Sec[e + f*x]^5*(Sin[e + f*x]^2/(a + b) + ((a + 2*b + a*Cos[2 
*(e + f*x)])*Sin[e + f*x]^2)/(a + b)^2 - (12*Sin[e + f*x]^4)/(a + b) + (16 
*(a + b - a*Sin[e + f*x]^2)*(1 - (a*Sin[e + f*x]^2)/(a + b))*((-6*a*(a + b 
)*Sin[e + f*x]^2)/(a + 2*b + a*Cos[2*(e + f*x)]) + (a^2*(a + b)*Sin[e + f* 
x]^4)/(a + b - a*Sin[e + f*x]^2)^2 + (3*Sqrt[a]*Sqrt[a + b]*ArcSin[(Sqrt[a 
]*Sin[e + f*x])/Sqrt[a + b]]*Sin[e + f*x])/Sqrt[(a + b - a*Sin[e + f*x]^2) 
/(a + b)]))/a^3))/(768*Sqrt[2]*f*(a + b*Sec[e + f*x]^2)^(5/2)*(a + b - a*S 
in[e + f*x]^2)^(3/2)) + ((a + 2*b + a*Cos[2*e + 2*f*x])^(5/2)*Csc[e + f*x] 
*Sec[e + f*x]^5*(Sin[e + f*x]^2/(a + b) + ((a + 2*b + a*Cos[2*(e + f*x)])* 
Sin[e + f*x]^2)/(a + b)^2 - (24*Sin[e + f*x]^4)/(a + b) + (96*Sin[e + f*x] 
^6)/a + (80*(a + b - a*Sin[e + f*x]^2)*(1 - (a*Sin[e + f*x]^2)/(a + b))...
 
3.2.26.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4620, 372, 402, 402, 27, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^4}{\left (a+b \sec (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {-2 (2 a+3 b) \tan ^2(e+f x)+a+b}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{4 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {(a+b) (3 a+7 b)-4 b (5 a+7 b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {(a+b) \left ((a+b) (9 a+35 b)-2 b (23 a+35 b) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a (a+b)}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {(a+b) (9 a+35 b)-2 b (23 a+35 b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {\int \frac {3 (a+b) \left (3 a^2+30 b a+35 b^2\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}-\frac {5 b (11 a+21 b) \tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {3 \left (3 a^2+30 a b+35 b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}-\frac {5 b (11 a+21 b) \tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {3 \left (3 a^2+30 a b+35 b^2\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}-\frac {5 b (11 a+21 b) \tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(5 a+7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {3 \left (3 a^2+30 a b+35 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}-\frac {5 b (11 a+21 b) \tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {b (23 a+35 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{4 a}}{f}\)

input
Int[Sin[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]
 
output
(Tan[e + f*x]/(4*a*(1 + Tan[e + f*x]^2)^2*(a + b + b*Tan[e + f*x]^2)^(3/2) 
) - (((5*a + 7*b)*Tan[e + f*x])/(2*a*(1 + Tan[e + f*x]^2)*(a + b + b*Tan[e 
 + f*x]^2)^(3/2)) - (-1/3*(b*(23*a + 35*b)*Tan[e + f*x])/(a*(a + b + b*Tan 
[e + f*x]^2)^(3/2)) + ((3*(3*a^2 + 30*a*b + 35*b^2)*ArcTan[(Sqrt[a]*Tan[e 
+ f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/a^(3/2) - (5*b*(11*a + 21*b)*Tan[ 
e + f*x])/(a*Sqrt[a + b + b*Tan[e + f*x]^2]))/(3*a))/(2*a))/(4*a))/f
 

3.2.26.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
3.2.26.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1610\) vs. \(2(203)=406\).

Time = 8.52 (sec) , antiderivative size = 1611, normalized size of antiderivative = 7.10

method result size
default \(\text {Expression too large to display}\) \(1611\)

input
int(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/24/f/a^4/(-a)^(1/2)*(b+a*cos(f*x+e)^2)*(6*(-a)^(1/2)*a^3*cos(f*x+e)^6*si 
n(f*x+e)-15*(-a)^(1/2)*a^3*cos(f*x+e)^4*sin(f*x+e)-21*(-a)^(1/2)*a^2*b*cos 
(f*x+e)^4*sin(f*x+e)+9*cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+ 
e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a 
)*a^3+90*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a 
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^2*b*cos(f*x+e)^3+105*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e) 
^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a*b^2*cos(f*x+e)^3+9*cos(f*x+e)^2*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e) 
^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^3+90*((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2) 
*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin 
(f*x+e)*a)*a^2*b*cos(f*x+e)^2+105*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e) 
+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)* 
a*b^2*cos(f*x+e)^2-78*(-a)^(1/2)*a^2*b*cos(f*x+e)^2*sin(f*x+e)-140*(-a)...
 
3.2.26.5 Fricas [A] (verification not implemented)

Time = 7.53 (sec) , antiderivative size = 873, normalized size of antiderivative = 3.85 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\left [-\frac {3 \, {\left ({\left (3 \, a^{4} + 30 \, a^{3} b + 35 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + 3 \, a^{2} b^{2} + 30 \, a b^{3} + 35 \, b^{4} + 2 \, {\left (3 \, a^{3} b + 30 \, a^{2} b^{2} + 35 \, a b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) - 8 \, {\left (6 \, a^{4} \cos \left (f x + e\right )^{7} - 3 \, {\left (5 \, a^{4} + 7 \, a^{3} b\right )} \cos \left (f x + e\right )^{5} - 2 \, {\left (39 \, a^{3} b + 70 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{3} - 5 \, {\left (11 \, a^{2} b^{2} + 21 \, a b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{192 \, {\left (a^{7} f \cos \left (f x + e\right )^{4} + 2 \, a^{6} b f \cos \left (f x + e\right )^{2} + a^{5} b^{2} f\right )}}, -\frac {3 \, {\left ({\left (3 \, a^{4} + 30 \, a^{3} b + 35 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + 3 \, a^{2} b^{2} + 30 \, a b^{3} + 35 \, b^{4} + 2 \, {\left (3 \, a^{3} b + 30 \, a^{2} b^{2} + 35 \, a b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \, {\left (6 \, a^{4} \cos \left (f x + e\right )^{7} - 3 \, {\left (5 \, a^{4} + 7 \, a^{3} b\right )} \cos \left (f x + e\right )^{5} - 2 \, {\left (39 \, a^{3} b + 70 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{3} - 5 \, {\left (11 \, a^{2} b^{2} + 21 \, a b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{96 \, {\left (a^{7} f \cos \left (f x + e\right )^{4} + 2 \, a^{6} b f \cos \left (f x + e\right )^{2} + a^{5} b^{2} f\right )}}\right ] \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")
 
output
[-1/192*(3*((3*a^4 + 30*a^3*b + 35*a^2*b^2)*cos(f*x + e)^4 + 3*a^2*b^2 + 3 
0*a*b^3 + 35*b^4 + 2*(3*a^3*b + 30*a^2*b^2 + 35*a*b^3)*cos(f*x + e)^2)*sqr 
t(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*( 
5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 
 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 
+ 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 
14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f 
*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) 
) - 8*(6*a^4*cos(f*x + e)^7 - 3*(5*a^4 + 7*a^3*b)*cos(f*x + e)^5 - 2*(39*a 
^3*b + 70*a^2*b^2)*cos(f*x + e)^3 - 5*(11*a^2*b^2 + 21*a*b^3)*cos(f*x + e) 
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^7*f*cos(f*x 
 + e)^4 + 2*a^6*b*f*cos(f*x + e)^2 + a^5*b^2*f), -1/96*(3*((3*a^4 + 30*a^3 
*b + 35*a^2*b^2)*cos(f*x + e)^4 + 3*a^2*b^2 + 30*a*b^3 + 35*b^4 + 2*(3*a^3 
*b + 30*a^2*b^2 + 35*a*b^3)*cos(f*x + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*cos( 
f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + 
e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + 
e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4* 
(6*a^4*cos(f*x + e)^7 - 3*(5*a^4 + 7*a^3*b)*cos(f*x + e)^5 - 2*(39*a^3*b + 
 70*a^2*b^2)*cos(f*x + e)^3 - 5*(11*a^2*b^2 + 21*a*b^3)*cos(f*x + e))*sqrt 
((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^7*f*cos(f*x + ...
 
3.2.26.6 Sympy [F]

\[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sin ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sin(f*x+e)**4/(a+b*sec(f*x+e)**2)**(5/2),x)
 
output
Integral(sin(e + f*x)**4/(a + b*sec(e + f*x)**2)**(5/2), x)
 
3.2.26.7 Maxima [F]

\[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")
 
output
integrate(sin(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(5/2), x)
 
3.2.26.8 Giac [F]

\[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^4}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \]

input
int(sin(e + f*x)^4/(a + b/cos(e + f*x)^2)^(5/2),x)
 
output
int(sin(e + f*x)^4/(a + b/cos(e + f*x)^2)^(5/2), x)